登录    注册    忘记密码

详细信息

融合Haar型局部特征的人耳识别算法    

Ear Recognition Algorithm Based on Haar Local Feature Fusion

文献类型:期刊文献

中文题名:融合Haar型局部特征的人耳识别算法

英文题名:Ear Recognition Algorithm Based on Haar Local Feature Fusion

作者:王育坚[1];高倩[1];谭卫雄[1];李深圳[1]

第一作者:王育坚

机构:[1]北京联合大学智慧城市学院

第一机构:北京联合大学智慧城市学院

年份:2019

卷号:55

期号:18

起止页码:127-131

中文期刊名:计算机工程与应用

外文期刊名:Computer Engineering and Applications

收录:CSTPCD;;北大核心:【北大核心2017】;CSCD:【CSCD_E2019_2020】;

基金:国家自然科学基金(No.61572077)

语种:中文

中文关键词:人耳识别;Haar特征;局部二值模式;梯度方向直方图

外文关键词:ear recognition;Haar feature;local binary pattern;histogram of oriented gradient

摘要:人耳具有丰富的结构特征,针对单一特征描述影响人耳识别率的不足,提出一种融合Haar型局部特征的人耳识别算法。算法采用符合人耳外部形状的椭圆形LBP算子与HOG算子,分别提取图像的纹理特征和边缘特征,将两种特征进行融合。利用Haar特征运算快捷的优势,引入到LBP和HOG特征提取中。通过分别设计的4组Haar编码模式,构建椭圆形LBP算子与HOG算子。对改进算法进行实验与分析,实验结果表明了算法的有效性和实用性。
The human ear has a lot of structural features.For the insufficiency of the single feature description affecting the ear recognition rate,an ear recognition algorithm based on the Haar local feature is proposed.The algorithm uses elliptical LBP operator and HOG operator which are in line with the external shape of the human ear to extract the texture features and edge features of the image,and fuse the two features.The advantages of using Haar feature calculations are introduced into LBP and HOG feature extraction.The elliptic LBP operator and HOG operator are constructed by designing four groups of Haar coding modes.The experiment and analysis of the improved algorithm are carried out.The experimental results show the effectiveness and practicability of the algorithm.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心