详细信息
文献类型:期刊文献
中文题名:时间序列数据趋势转折点提取算法
英文题名:Trend Turning Point Extraction Algorithm for Time Series Data
作者:邢邗[1];石晓达[1];孙连英[2];葛娜[1]
第一作者:邢邗
机构:[1]北京联合大学信息学院;[2]北京联合大学自动化学院
第一机构:北京联合大学智慧城市学院
年份:2018
卷号:44
期号:1
起止页码:56-61
中文期刊名:计算机工程
外文期刊名:Computer Engineering
收录:CSTPCD;;Scopus;北大核心:【北大核心2017】;CSCD:【CSCD_E2017_2018】;
基金:国家重点研发计划项目(2016YFC0802107)
语种:中文
中文关键词:时间序列;趋势转折点;UCR时间序列分类数据集;分段线性表示;拟合误差
外文关键词:time series;trend turning point; UCR time series classification dataset;Piecewise Linear Representation(PLR) ; fitting error
摘要:时间序列数据蕴含趋势信息,可以根据数据的趋势信息提取趋势转折点,达到压缩数据、减少噪声影响的目的。通过分析时间序列数据的趋势信息,提出自适应数据趋势转折点提取算法。该算法不依赖任何先验知识,根据数据本身的趋势特征自动提取趋势转折点,提取信息包括坐标索引和对应数据。UCR时间序列分类数据集与SEEP、CAP和PAA等算法进行对比的实验结果表明,在多种数据情况下,该算法拟合误差和分类错误率更小,平均拟合误差为0.373 6,分类错误率同原始数据的分类错误率相比减少3.39%。
The time series data contains trend information, which can extract the trend turning point according to the trend information of the data, and can achieve the purpose of compressing the data and reducing the influence of noise. By analyzing the trend information of time series data, an adaptive data trend turning point extraction algorithm is proposed. The algorithm does not rely on any prior knowledge, only according to the trend characteristics of the data itself automatically extract the trend turning point, extracted information including the coordinate index and the corresponding data. Compared with SEEP, CAP and PAA algorithm, experimental results show that the fitting error and classification error rate of the algorithm are smaller in the case of multiple data, and the average fitting error is 0. 373 6, the classification error rate compared with the original data classification error rate decreases by 3.39% .
参考文献:
正在载入数据...