详细信息
基于气象因素的PM_(2.5)质量浓度预测模型
Prediction models of PM_(2.5) mass concentration based on meteorological factors
文献类型:期刊文献
中文题名:基于气象因素的PM_(2.5)质量浓度预测模型
英文题名:Prediction models of PM_(2.5) mass concentration based on meteorological factors
作者:刘杰[1];杨鹏[2];吕文生[1];刘阿古达木[1];刘俊秀[2]
第一作者:刘杰
机构:[1]北京科技大学土木与环境工程学院;[2]北京市信息服务工程重点实验室(北京联合大学)
第一机构:北京科技大学土木与环境工程学院,北京100083
年份:2015
卷号:45
期号:6
起止页码:76-83
中文期刊名:山东大学学报:工学版
收录:CSTPCD;;北大核心:【北大核心2014】;
基金:北京市属高等学校高层次人才引进与培养--"长城学者"培养计划资助项目(CIT&TCD20130320)
语种:中文
中文关键词:PM2.5;多元线性回归;机器学习;BP神经网络;支持向量机
外文关键词:PM2.5; multiple linear regression; machine learning; BP neural network; support vector machine
摘要:为得出拟合效果最佳的预测模型,建立了多元回归和机器学习预测模型对PM_(2.5)质量浓度进行预测。在输入气象因素的基础上,引入污染物质量浓度基础值和周期因素两类变量作为预测输入,并对4种预测模型进行对比研究。研究结果表明:对预测输入进行改进后,多元线性回归预测模型拟合优度由0.52提高至0.64,所选取的气象参数、污染物质量浓度基础值和周期因素能较好地描述PM_(2.5)质量浓度的日变化情况;与多元线性回归预测模型相比,BP神经网络和支持向量机两种预测模型能较好地捕捉PM_(2.5)质量浓度与预测输入之间的非线性影响规律,整体拟合优度分别达0.69和0.74,预测准确度较高;支持向量机预测模型可作为PM_(2.5)质量浓度预测的首选方法。
In order to get the optimal prediction model,the prediction models of PM_(2.5)mass concentration based on multiple linear regression and machine learning were developed. Basic values of pollutants mass concentrations and periodical factors were introduced as predictive inputs based on meteorological factors. Then four prediction models were developed for comparison. Results showed that goodness of fit of multiple linear regression model based on improved predictive inputs was increased from 0. 52 to 0. 64. The selected meteorological factors,basic values of pollutants mass concentrations and periodical factors could accurately describe daily variation of PM_(2.5). BP neural network and support vector machine models could be trained to model the highly non-linear relationships between PM_(2.5)mass concentration and predictive inputs. They provided satisfactory results with goodness of fit of 0. 69 and 0. 74,respectively. Support vector machine model was proved to be optimal prediction model of PM_(2.5)mass concentration.
参考文献:
正在载入数据...