登录    注册    忘记密码

详细信息

A MADRL-Based Credit Allocation Approach for Interactive Multi-Agents  ( SCI-EXPANDED收录 EI收录)  

文献类型:期刊文献

英文题名:A MADRL-Based Credit Allocation Approach for Interactive Multi-Agents

作者:Wang, Ershen[1,2,3];Wu, Xiaotong[1];Hong, Chen[4,5];Shang, Xinna[4,5];Wu, Peifeng[6];He, Chenglong[3,7];Qu, Pingping[1]

第一作者:Wang, Ershen

通讯作者:Hong, C[1];Hong, C[2]

机构:[1]Shenyang Aerosp Univ, Sch Elect & Informat Engn, Shenyang 110136, Peoples R China;[2]Shenyang Aerosp Univ, Sch Civil Aviat, Shenyang 110136, Peoples R China;[3]54th Res Inst CETC, Shijiazhuang 050001, Peoples R China;[4]Beijing Union Univ, Multiagent Syst Res Ctr, Beijing 100101, Peoples R China;[5]Beijing Union Univ, Coll Robot, Beijing 100101, Peoples R China;[6]Beijing Union Univ, Sch Urban Rail Transit & Logist, Beijing 100101, Peoples R China;[7]54th Res Inst CETC, State Key Lab Satellite Nav Syst & Equipment Techn, Shijiazhuang 050001, Peoples R China

第一机构:Shenyang Aerosp Univ, Sch Elect & Informat Engn, Shenyang 110136, Peoples R China

通讯机构:[1]corresponding author), Beijing Union Univ, Multiagent Syst Res Ctr, Beijing 100101, Peoples R China;[2]corresponding author), Beijing Union Univ, Coll Robot, Beijing 100101, Peoples R China.|[1141739]北京联合大学机器人学院;[11417]北京联合大学;

年份:2025

外文期刊名:INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING

收录:;EI(收录号:20251118051215);Scopus(收录号:2-s2.0-86000736768);WOS:【SCI-EXPANDED(收录号:WOS:001443853900001)】;

基金:This work is supported by the National Key R&D Program of China (Grant No. 2018AAA0100804); the National Natural Science Foundation of China (62173237); the Open Fund of State Key Laboratory of Satellite Navigation System and Equipment Technology (CEPNT2022A01, CEPNT2022B04); the SongShan Laboratory Foundation, China (No. YYJC062022017); Liaoning Provincial Universities' Fundamental Research Funds for Basic Scientific Research (Grant No. Z20240177).

语种:英文

外文关键词:Reinforcement learning; deep neural network; multi-agent; credit allocation

摘要:In multi-agent systems (MAS), the interactions and credit allocation among agents are essential for achieving efficient cooperation. To enhance the interactivity and efficiency of credit allocation in multi-agent reinforcement learning, we introduce a credit allocation for interactive multi-agents method (CAIM). CAIM not only considers the effects of various actions on other agents but also leverages attention mechanisms to handle the mismatch between observations and actions. With a unique credit allocation strategy, agents can more precisely assess their contributions during collaboration. Experiments in various adversarial scenarios within the SMAC benchmark environment indicate that CAIM markedly outperforms existing multi-agent reinforcement learning approaches. Further ablation studies confirm the effectiveness of each CAIM component. This research presents a new paradigm for enhancing collaboration efficiency and overall performance in MAS.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心