登录    注册    忘记密码

详细信息

基于随机前沿分析(SFA)方法的中国旅游业全要素生产率研究    

Research on Tourism Industry Total Factor Productivity in China—— Based on Stochastic Frontier Analysis(SFA)

文献类型:期刊文献

中文题名:基于随机前沿分析(SFA)方法的中国旅游业全要素生产率研究

英文题名:Research on Tourism Industry Total Factor Productivity in China—— Based on Stochastic Frontier Analysis(SFA)

作者:张丽峰[1]

第一作者:张丽峰

机构:[1]北京联合大学旅游学院

第一机构:北京联合大学旅游学院

年份:2014

卷号:30

期号:2

起止页码:221-224

中文期刊名:资源开发与市场

外文期刊名:Resource Development & Market

收录:CSTPCD;;国家哲学社会科学学术期刊数据库;CSSCI:【CSSCI_E2014_2016】;

基金:国家自然科学基金项目(编号:71373023)

语种:中文

中文关键词:全要素生产率;Malmquist指数;随机前沿函数;旅游业

外文关键词:total factor productivity ; Malmquist index; stochastic frontier analysis; tourism industry

摘要:以我国1997—2009年旅游业相关数据为样本,基于随机前沿分析方法,运用Malmquist指数模型对我国各省份、东中西及全国的旅游业全要素生产率指数进行了测算,并进一步分解为技术进步指数和技术效率指数。得到以下结论:样本期内,各省份旅游业全要素生产率呈现不断增长趋势,增长较快的省份主要来自中西部地区,东部地区的省份增长较慢。东中西地区的旅游业全要素生产率增长存在差异性,西部增长最快,东部最慢,三大区域旅游业全要素生产率的增长主要得益于技术进步,西部技术进步水平仍快于中东部地区。全国旅游业全要素生产率年均增长7.6449%,技术进步起了主要作用,技术进步年均增长6.9933%,而技术效率增长仅为0.609%,其影响较小。
This paper estimated the Chinese provincial, three regional and national tourism TFP index, and further decomposed into technical progress index and technical efficiency index, using the Malmquist index and the stochastic frontier production function model from 1997 to 2009. The following conclusions were:During the sample period, the provincial tourism TFP showed a growing trend, faster growing provinces were mainly from central and western regions, while the slower growing provinces were mainly in the eastern regions. Three regional tourism total factor productivity growth had differences, the fastest was the west, the east was the slowest, three regional tourism TFP growth was mainly due to technological progress, the western technological progress level was still faster than the central and eastern regions. National tourism TFP was 7. 6449 % annual growth rate, technological progress played a major role, which was 6. 9933 % annual growth rate, while technical efficiency growth rate was only 0. 609 %, which had less affected.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心