登录    注册    忘记密码

详细信息

低空无人机探测增强数据集研究    

Enhancement Dataset for Low Altitude Unmanned Aerial Vehicle Detection

文献类型:期刊文献

中文题名:低空无人机探测增强数据集研究

英文题名:Enhancement Dataset for Low Altitude Unmanned Aerial Vehicle Detection

作者:王志[1,2];胡威[3];王尔申[3];宏晨[4];徐嵩[3];刘梅芷[5]

第一作者:WANG Zhi

机构:[1]浙江建德通用航空研究院,建德311612;[2]中国民航管理干部学院通用航空系,北京100102;[3]沈阳航空航天大学电子信息工程学院,沈阳110136;[4]北京联合大学机器人学院,北京100101;[5]沈阳航空航天大学人工智能学院,沈阳110136

第一机构:Zhejiang Jiande General Aviation Research Institute,Jiande 311612,P.R.China

年份:2021

卷号:38

期号:6

起止页码:914-926

中文期刊名:南京航空航天大学学报:英文版

外文期刊名:Transactions of Nanjing University of Aeronautics & Astronautics

收录:CSTPCD;;Scopus;CSCD:【CSCD2021_2022】;

基金:supported by the National Natural Science Foundation of China(No. 62173237);the National Key R&D Program of China(No.2018AAA0100804);the Zhejiang Key laboratory of General Aviation Operation technology(No.JDGA2020-7);the Talent Project of Revitalization Liaoning(No. XLYC1907022);the Key R & D Projects of Liaoning Province (No. 2020JH2/10100045);the Natural Science Foundation of Liaoning Province(No. 2019-MS-251);the Scientific Research Project of Liaoning Provincial Department of Education(No.JYT2020142);the High-Level Innovation Talent Project of Shenyang (No.RC190030);the Science and Technology Project of Beijing Municipal Commission of Education (No. KM201811417005);the Academic Research Projects of Beijing Union University(No.ZB10202005)。

语种:中文

中文关键词:无人机;无人机数据集;目标探测;深度学习

外文关键词:unmanned aerial vehicle(UAV);UAV dataset;object detection;deep learning

摘要:近年来,与无人机有关的事故显著增加,使得对反无人机系统研究有着迫切的需求。在对低空无人机探测的方法中深度学习算法应用具有较大潜力,但目前缺乏高质量的低空无人机探测数据集。本文研究建立了一种包含无人机和其他干扰目标的综合增强高质量数据集。通过实际场景拍摄、网络爬虫和数据增强方法获得大量高清无人机图像。并且,为解决复杂场景和远距离的低空无人机探测以及干扰目标所造成的较高误检率和漏检率问题,在数据集中增加了具有干扰特征的目标。最后,通过4种主流深度学习模型对所建立的数据集进行训练、验证和测试。结果表明,建立的高质量数据集可显著提高无人机探测的准确率。该研究为反无人机系统研究以及无人机探测模型优化提供了一定的验证数据集。
In recent years,the number of incidents involved with unmanned aerial vehicles(UAVs)has increased conspicuously,resulting in an increasingly urgent demand for developing anti-UAV systems. The vast requirements of high detection accuracy with respect to low altitude UAVs are put forward. In addition,the methods of UAV detection based on deep learning are of great potential in low altitude UAV detection. However,such methods need high-quality datasets to cope with the problem of high false alarm rate(FAR)and high missing alarm rate(MAR)in low altitude UAV detection,special high-quality low altitude UAV detection dataset is still lacking. A handful of known datasets for UAV detection have been rejected by their proposers for authorization and are of poor quality. In this paper,a comprehensive enhanced dataset containing UAVs and jamming objects is proposed. A large number of high-definition UAV images are obtained through real world shooting, web crawler, and data enhancement.Moreover,to cope with the challenge of low altitude UAV detection in complex backgrounds and long distance,as well as the puzzle caused by jamming objects,the noise with jamming characteristics is added to the dataset. Finally,the dataset is trained,validated,and tested by four mainstream deep learning models. The results indicate that by using data enhancement,adding noise contained jamming objects and images of UAV with complex backgrounds and long distance,the accuracy of UAV detection can be significantly improved. This work will promote the development of anti-UAV systems deeply,and more convincing evaluation criteria are provided for models optimization for UAV detection.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心