详细信息
文献类型:期刊文献
中文题名:气象预报中阴雨雾图像优化识别仿真
英文题名:Simulation and Optimization of Rain Fog Image in Weather Forecast
作者:王琦[1]
第一作者:王琦
机构:[1]北京联合大学师范学院
第一机构:北京联合大学师范学院
年份:2017
卷号:34
期号:7
起止页码:422-425
中文期刊名:计算机仿真
外文期刊名:Computer Simulation
收录:北大核心:【北大核心2014】;
基金:基金项目:北京地区地磁场三维可视化研究与实现(KM201311417005)
语种:中文
中文关键词:气象预报;低分辨率图像;识别
外文关键词:Weather forecast ; Image with low resolution ; Recognition
摘要:对气象预报中的阴雨雾图像的识别,能够更好的识别低分辨率图像中有用的但是没有表现出来的信息。对低分辨率图像的优化识别,需要获取图像整体色度差均值,将图像目标区域的轮廓变得光滑,完成对阴雨雾图像的识别。传统方法先提取图像的相位和幅值特征,将直方图定义为图像的特征向量,但忽略了获取图像整体色度差均值,导致图像识别精度较低。提出基于二次最大熵的模糊聚类的阴雨雾图像识别方法。利用多尺度Retinex变换理论对图像的亮度进行增强,将低分辨率图像分割为目标区域和非目标区域,获取图像整体色度差均值,给出低分辨率图像的最大判断准则,利用形态学滤波将图像目标区域的轮廓变得光滑,完成对阴雨雾低分辨率图像优化识别。实验结果表明,所提方法识别精度高,可以有效地识别出阴雨雾低分辨率图像中的重要信息。
In this paper, we propose a recognition method for cloudy, rainy, and foggy image based on fuzzy clus- tering of secondary maximum entropy. Firstly, multi-scale Retinex conversion theory was used to enhance brightness of image, and image with low resolution was divided into object region and non-object area. Then, mean value of o- verall color difference of image was acquired, and maximum judgment criteria of image with low resolution were pro- vided. Moreover, morphological filter was used to turn outline of the object area into smooth. Finally, the optimiza- tion recognition was completed. The experimental resuhs show that the method has high recognition precision and can recognize important information in cloudy, rainy, and foggy image with low resolution effectively.
参考文献:
正在载入数据...