登录    注册    忘记密码

详细信息

基于忠诚度的社交网络用户发现方法    

User discovery based on loyalty in social networks

文献类型:期刊文献

中文题名:基于忠诚度的社交网络用户发现方法

英文题名:User discovery based on loyalty in social networks

作者:薛云[1,2,3];李国和[1,2,4];吴卫江[1,2,4];洪云峰[4];周晓明[4]

第一作者:薛云

机构:[1]中国石油大学(北京)石油数据挖掘北京市重点实验室;[2]中国石油大学(北京)地球物理与信息工程学院;[3]北京联合大学商务学院;[4]石大兆信数字身份管理与物联网技术研究院

第一机构:中国石油大学(北京)石油数据挖掘北京市重点实验室,北京102249

年份:2017

卷号:37

期号:11

起止页码:3095-3100

中文期刊名:计算机应用

外文期刊名:Journal of Computer Applications

收录:CSTPCD;;北大核心:【北大核心2014】;CSCD:【CSCD_E2017_2018】;

基金:国家863计划项目(2009AA062802);国家自然科学基金资助项目(60473125;71572015);中国石油(CNPC)石油科技中青年创新基金资助项目(05E7013);国家油气重大专项子课题(G5800-08-ZS-WX);中国石油大学(北京)克拉玛依校区科研启动基金资助项目(RCYJ2016B-03-001)~~

语种:中文

中文关键词:社交网络;用户发现;忠诚度;RFM;社区划分

外文关键词:social network; user discovery; loyalty; Recency Frequency Monetary (RFM) ; community division

摘要:针对社交网络中提高用户的高黏性问题,提出了一种基于用户忠诚度的用户发现的算法。该算法利用双重RFM模型对用户忠诚度进行计算,挖掘出忠诚度不同分类的用户。首先,通过双重RFM模型动态计算出用户在某一时间段的消费价值与行为价值,得到用户某一时间段的忠诚度;其次,根据用户的忠诚度,确定标度曲线,利用相似度计算找到典型的忠诚用户与不忠诚用户;最后,采用基于模块度的社区发现与独立级联传播模型,发现潜在的忠诚用户与不忠诚用户。在某社交网络的微博数据集上,实现了社会性网络服务(SNS)下用户忠诚度的量化表示,获得了基于用户忠诚度的用户发现结果。实验结果表明,所提算法能够有效挖掘出基于忠诚度的用户分类,可以为社交网站针对用户的个性化推荐及营销等,提供理论支持和实用方法。
Aiming at improving the users' high viscosity in social networks, an algorithm based on user loyalty in social network system was proposed. In the proposed algorithm, double Recency Frequency Monetary (RFM) model was used for mining the different loyalty kinds of users. Firstly, according to the double RFM model, the users' consumption value and behavior value were calculated dynamically and the loyalty in a certain time was got. Secondly, the typical loyal users and disloyal users were found out by using the founded standard curve and similarity calculation. Lastly, the potential loyal and disloyal users were found out by using modularity-based community discovery and independent cascade propagation model. On some microblog datasets of a social network, the quantitative representation of user loyalty was confirmed in Social Network Service (SNS), thus the users could be distinguished based on users' loyalty. The experimental results show that the proposed algorithm can be used to effectively dig out different loyalty kinds of users, and can be applied to personalized recommendation, marketing, etc. in the social network system.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心