登录    注册    忘记密码

详细信息

集成PCA和LSTM神经网络的浸润线预测方法    

A PCA-LSTM neural network-integrated method for phreatic line prediction

文献类型:期刊文献

中文题名:集成PCA和LSTM神经网络的浸润线预测方法

英文题名:A PCA-LSTM neural network-integrated method for phreatic line prediction

作者:戴健非[1];杨鹏[1,2];诸利一[2];郭攀[3];贯怀光[1]

第一作者:戴健非

机构:[1]北京联合大学北京市信息服务工程重点实验室,北京100101;[2]北京科技大学土木与资源工程学院,北京100083;[3]福建马坑矿业股份有限公司,福建龙岩364021

第一机构:北京联合大学北京市信息服务工程重点实验室

年份:2020

卷号:30

期号:3

起止页码:94-101

中文期刊名:中国安全科学学报

外文期刊名:China Safety Science Journal

收录:CSTPCD;;北大核心:【北大核心2017】;CSCD:【CSCD2019_2020】;

基金:国家自然科学基金资助(5177041195);国家重点研发计划课题资助项目(2017YFC0804604);北京联合大学研究生资助项目。

语种:中文

中文关键词:尾矿坝;浸润线;主成分分析(PCA);长短期记忆(LSTM)神经网络;预测

外文关键词:tailings dam;phreatic line;principal component analysis(PCA);long short-term memory(LSTM) neural network;prediction

摘要:为预防尾矿库溃坝事故,挖掘尾矿库在线监测系统的有效信息,提高浸润线预测精度,构建基于主成分分析(PCA)和长短期记忆(LSTM)神经网络的浸润线预测模型;以陈坑尾矿库为例,引入皮尔森(Pearson)相关系数和变量组合法,确定模型输入为预测前3天的待测点浸润线位置、相邻周边2点浸润线位置、库水位、坝体纵向位移和降雨量等18个特征量;利用PCA消除输入变量间的数据冗余,并采用LSTM神经网络预测未来3天的浸润线位置。结果表明:基于PCA和LSTM神经网络的浸润线预测方法具有较高的预测精度,平均绝对误差为0. 011,决策系数为0. 805,且能实现不同降雨工况下尾矿库浸润线的稳定预测。
In order to prevent dam-breaking accidents of tailings ponds,to excavate effective information of online monitoring system and improve prediction accuracy of phreatic lines,a prediction model was set up based on PCA and LSTM neural network. Then,with Chenkeng tailings pond as an example,Pearson correlation coefficient and variable combination method were introduced to determine 18 features of model inputs,including location of phreatic line of measuring point in the first three days,location of two adjacent surrounding saturation lines,water level of ponds,longitudinal displacement of dam body and rainfall. Finally,PCA was used to eliminate data redundancy between input variables,and LSTM neural network was applied to predict location of phreatic line for the next three days. The results show that PCALSTM neural network-based method presents higher predication accuracy with an average absolute error of0. 011 and a decision coefficient of 0. 805. And it can achieve stable prediction of phreatic lines for tailings ponds under different rainfall conditions.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心