详细信息
Brake Subharmonic Solutions of Subquadratic Hamiltonian Systems ( SCI-EXPANDED收录)
文献类型:期刊文献
英文题名:Brake Subharmonic Solutions of Subquadratic Hamiltonian Systems
作者:Li, Chong[1]
通讯作者:Li, C[1]
机构:[1]Beijing Union Univ, Basic Dept, Beijing 100101, Peoples R China
第一机构:北京联合大学基础教学部
通讯机构:[1]corresponding author), Beijing Union Univ, Basic Dept, Beijing 100101, Peoples R China.|[1141788]北京联合大学基础教学部;[11417]北京联合大学;
年份:2016
卷号:37
期号:3
起止页码:405-418
外文期刊名:CHINESE ANNALS OF MATHEMATICS SERIES B
收录:;Scopus(收录号:2-s2.0-84964483826);WOS:【SCI-EXPANDED(收录号:WOS:000377678700008)】;
基金:This work was supported by the National Natural Science Foundation of China (Nos. 11501030, 11226156) and the Beijing Natural Science Foundation (No. 1144012).
语种:英文
外文关键词:Brake subharmonic solution; L-Maslov type index; Hamiltonian systems
摘要:The author mainly uses the Galerkin approximation method and the iteration inequalities of the L-Maslov type index theory to study the properties of brake subharmonic solutions for the Hamiltonian systems z over dot (t) = J del H(t, z(t)), where H(t, z) = 1/2 ((B) over tilde (t) z, z) + (H) over cap (t, z), (B) over cap (t) is a semipositive symmetric continuous matrix and (H) over cap is unbounded and not uniformly coercive. It is proved that when the positive integers j and k satisfy the certain conditions, there exists a jT-periodic nonconstant brake solution z(j) such that z(j) and z(kj) are distinct.
参考文献:
正在载入数据...