登录    注册    忘记密码

详细信息

HUIM-IPSO:一个改进的粒子群优化高效用项集挖掘算法    

High Utility Itemset Mining Algorithm Based on Improved Particle Swarm Optimization

文献类型:期刊文献

中文题名:HUIM-IPSO:一个改进的粒子群优化高效用项集挖掘算法

英文题名:High Utility Itemset Mining Algorithm Based on Improved Particle Swarm Optimization

作者:王常武[1];尹松林[1];刘文远[1];魏小梅[1];郑红军[1];杨继萍[2]

第一作者:王常武

机构:[1]燕山大学信息科学与工程学院,河北秦皇岛066004;[2]北京联合大学机器人学院,北京100101

第一机构:燕山大学信息科学与工程学院,河北秦皇岛066004

年份:2020

卷号:41

期号:5

起止页码:1084-1090

中文期刊名:小型微型计算机系统

外文期刊名:Journal of Chinese Computer Systems

收录:CSTPCD;;Scopus;北大核心:【北大核心2017】;CSCD:【CSCD_E2019_2020】;

语种:中文

中文关键词:数据挖掘;关联规则;高效用项集;粒子群优化

外文关键词:data mining;association rules;high utility itemset;particle swarm optimization

摘要:高效用项集挖掘是数据挖掘中发现数据之间关系的技术之一.例如在商业服务领域效用值代表了某些商品组合的利润.高效用项集挖掘能够挖掘出数据中效用值比较大的项集—高效用项集,因此高效用项集挖掘近年来受到了更多的关注与研究.针对高效用项集在数据集中的不均匀分布,提出一个改进的粒子群优化高效用项集挖掘算法.算法改进了粒子群优化流程中种群优化值的生成方式,通过轮盘赌选择法在当前代种群的高效用项集中以一定概率选择下一代种群的初始优化值.这个改进增加了种群的多样性,使得算法能够挖掘出更多的高效用项集.实验结果验证了算法的可行性和有效性.
High utility itemset mining is one of the techniques for discovering the relationship between data in data mining.Utility value represents the profit of certain commodity combinations in the field of business services.The high utility itemset mining can mine the itemsets with large utility value in the data.Therefore,high utility itemset mining has received more attention and research in recent years.Because the distribution of high utility itemsets are not uniform in the dataset,this paper proposes a high utility itemset mining algorithm based on improved particle swarm optimization.The algorithm changes the generation method of the population optimization value in the particle swarm optimization process.The roulette selection method is used to select the initial optimization value of the next generation population with a certain probability in the high high itemsets of the current generation population.This change increases the diversity of the population,allowing the algorithm to mine more high utility itemsets.Finally,the experimental results verify the feasibility and effectiveness of the algorithm.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心