登录    注册    忘记密码

详细信息

基于K-means聚类的遥感影像条状地物半自动提取方法    

A Strips Features Semi-automatic Extraction Method of Remote Sensing Image Based on K-Means Clustering

文献类型:期刊文献

中文题名:基于K-means聚类的遥感影像条状地物半自动提取方法

英文题名:A Strips Features Semi-automatic Extraction Method of Remote Sensing Image Based on K-Means Clustering

作者:张璐璐[1];何宁[2];徐成[1];王金宝[1]

第一作者:张璐璐

机构:[1]北京联合大学北京市信息服务工程重点实验室;[2]北京联合大学信息学院

第一机构:北京联合大学北京市信息服务工程重点实验室

年份:2015

卷号:29

期号:1

起止页码:47-52

中文期刊名:北京联合大学学报

基金:国家自然科学基金项目(61370138;61372148);2014年"启明星"大学生科技创新项目(201411417SJ053);2014年研究生科技创新项目

语种:中文

中文关键词:K-means;图像增强;目标提取;迭代;阈值

外文关键词:K-means ; Image enhancement ; Extraction ; Iteration ; Threshold

摘要:遥感图像地物目标提取是遥感图像分析的关键步骤,通过分析遥感图像的频谱特性,提出一种基于K-means聚类的地物目标提取方法。首先通过时域和频域相结合的方法对原始图像进行增强,再利用K-means聚类算法对图像各个分量进行聚类,聚类结果分为目标类和背景类,然后分别计算每一类的特征值均值和方差,迭代两类像素的灰度值,同时结合数学形态学和阈值方法进行地物目标提取,得到最终的目标提取结果。实验对多幅遥感图像进行不同地物目标的提取,实验结果表明:该算法具有很好的抗噪能力,目标提取结果精确,有一定的现实意义。
Through analyzing the characteristics of remote sensing image, this paper proposed a segmentation method based on K-means. Firstly we did image enhancement with time domain and frequency domain combination. Then, clustering segmentation algorithm was employed to all components for poly class, which was divided into target class and background class. After that, each characteristic value of the mean and variance value was calculated to do iteration on any two class pixel. Finally, image segmentation was finished and results were achieved using mathematics morphology and threshold value. We tried to do extraction on multiple images with different target. The results showed that the algorithm has good resistance to noise with fast operation, and it also has certain significance.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心