详细信息
基于Inliers跟踪统计的RGB-D室内定位与地图构建
RGB-D Indoor Location and Map Building Based on Inliers Tracking Statistics
文献类型:期刊文献
中文题名:基于Inliers跟踪统计的RGB-D室内定位与地图构建
英文题名:RGB-D Indoor Location and Map Building Based on Inliers Tracking Statistics
作者:牛小宁[1];刘宏哲[1];袁家政[2];宣寒宇[1]
第一作者:牛小宁
机构:[1]北京联合大学北京市信息服务工程重点实验室,北京100101;[2]北京开放大学,北京100081
第一机构:北京联合大学北京市信息服务工程重点实验室
年份:2018
卷号:44
期号:9
起止页码:15-21
中文期刊名:计算机工程
外文期刊名:Computer Engineering
收录:CSTPCD;;Scopus;北大核心:【北大核心2017】;CSCD:【CSCD_E2017_2018】;
基金:国家自然科学基金"跨媒体社群图像语义理解"(61372148);国家自然科学基金"面向视频社交网站的视频内容理解与挖掘"(61571045);国家科技支撑项目"多彩贵州文化资源集成与文化旅游综合服务应用示范"(2015BAH55F03)
语种:中文
中文关键词:RGB-D相机;同时定位与地图构建;特征匹配;Inliers匹配内点;非线性优化;最近邻迭代算法
外文关键词:RGB-D camera;Simultaneous Localization and Mapping(SLAM);feature matching;Inliers matching interior point;nonlinear optimization;Iterative Closest Point(ICP)
摘要:室内移动机器人同时定位与地图构建(SLAM)的前端位姿估计与后端优化容易受运动模糊的干扰。为此,提出一种基于Inliers跟踪统计的室内定位与地图构建算法。对RGB图像进行特征提取和匹配,运用RANSAC算法得到Inliers后,通过对Inliers数量的跟踪与统计剔除受相机运动影响的模糊图像,然后利用最近邻迭代的非线性优化方法求解相机位姿。在此基础上,通过闭环检测和优化后的全局位姿拼接出运动轨迹和三维稠密点云图。实验结果表明,相对RGB-D SLAM算法,该算法能够有效提高SLAM系统的建图鲁棒性与精度。
The front pose estimation and back-end optimization of indoor mobile robot Simultaneous Localization and Mapping(SLAM)are susceptible to motion blur.To solve this problem,an indoor location and map building algorithm based on Inliers tracking statistics is proposed.After extracting and matching the features of RGB images and using the RANSAC algorithm to get Inliers,the fuzzy images which are affected by the motion of the camera are eliminated by tracking and statistics of the number of Inliers,and then the position of the camera is solved by the nonlinear optimization method of the Iterative Closest Point(ICP).On this basis,the trajectory and 3D dense point cloud images are obtained through closed loop detection and optimized global pose.Experimental results show that,compared with RGB-D SLAM algorithm,the proposed algorithm can effectively improve the robustness and accuracy of SLAM system map building.
参考文献:
正在载入数据...