登录    注册    忘记密码

详细信息

基于改进人工蜂群算法和BP神经网络的沥青路面路表裂缝识别    

Crack identification of asphalt pavement surface based on improved artificial bee colony algorithm and BP neural network

文献类型:期刊文献

中文题名:基于改进人工蜂群算法和BP神经网络的沥青路面路表裂缝识别

英文题名:Crack identification of asphalt pavement surface based on improved artificial bee colony algorithm and BP neural network

作者:谭卫雄[1];王育坚[1];李深圳[1]

第一作者:谭卫雄

机构:[1]北京联合大学信息学院

第一机构:北京联合大学智慧城市学院

年份:2019

卷号:16

期号:12

起止页码:2991-2998

中文期刊名:铁道科学与工程学报

外文期刊名:Journal of Railway Science and Engineering

收录:CSTPCD;;北大核心:【北大核心2017】;CSCD:【CSCD2019_2020】;

基金:国家自然科学基金资助项目(61572077,61871038)

语种:中文

中文关键词:自适应因子;人工蜂群算法;BP神经网络;路面裂缝识别

外文关键词:adaptive factor;artificial bee colony;BP neural network;pavement crack detection

摘要:为能够在复杂背景下更高效识别路面裂缝,通过加入自适应因子对人工蜂群(Artificial bee colony,ABC)算法的搜索位置和概率选择进行改进,利用改进的ABC算法去优化BP神经网络的权值与阈值,建立一种改进的ABC-BP混合神经网络路面裂缝识别算法。实验结果表明,该方法在收敛速度和准确度上优于基本的ABC-BP算法和BP算法,准确率、召回率和综合评价指标都超过了95%,验证了算法的通用性与有效性。
In order to identify pavement cracks more efficiently in complex backgrounds, an improved artificial bee colony and backward propagation neural network algorithm(ABC-BP) was proposed to identify pavement cracks. The improved ABC algorithm can improve search position and probability selection of ABC algorithm by adding adaptive factors, and was therefore used to optimize the weights and thresholds of the BP neural network. Experimental results show that the proposed method exceeds 95% in accuracy, recall rate and comprehensive evaluation indicators. In addition, this method is superior to the basic ABC-BP algorithm and BP algorithm in terms of convergence speed and accuracy. Furthermore, the versatility and effectiveness of the algorithm were verified.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心