登录    注册    忘记密码

详细信息

基于3D卷积神经网络的脑肿瘤图像分割    

Segmentation of Brain tumor image based on 3D convolution neural network

文献类型:期刊文献

中文题名:基于3D卷积神经网络的脑肿瘤图像分割

英文题名:Segmentation of Brain tumor image based on 3D convolution neural network

作者:宫浩栋[1];王育坚[1];韩静园[1]

第一作者:宫浩栋

机构:[1]北京联合大学智慧城市学院物联网与机器人实验室,北京100101

第一机构:北京联合大学智慧城市学院

年份:2022

卷号:48

期号:4

起止页码:472-477

中文期刊名:光学技术

外文期刊名:Optical Technique

收录:CSTPCD;;Scopus;北大核心:【北大核心2020】;CSCD:【CSCD_E2021_2022】;

基金:国家自然科学基金资助项目(62172045)。

语种:中文

中文关键词:脑胶质瘤;三维磁共振图像;图像分割;3D卷积神经网络

外文关键词:Brain glioma;three-dimensional magnetic resonance image;image segmentation;3D convolutional neural network

摘要:三维脑胶质瘤磁共振成像肿瘤形状各异、边缘模糊,目前大多数基于2D卷积神经网络的分割方法不能很好的分割三维图像。为了能够准确分割出三维图像中的肿瘤部分,提出一种融合多尺度特征信息的3D卷积神经网络脑肿瘤图像分割方法。利用并行的3D空洞卷积提取特征信息,将不同感受野的信息融合。将Dice损失和BCE损失结合,形成一种新的损失函数并配合恒等映射,进一步提高分割精度。在BraTs2020数据集上对模型进行验证,结果表明,该模型分割的全肿瘤区、核心区和增强区的Dice系数分别为89.1%、83.9%和82.6%。在LGG脑部肿瘤图像数据集上对模型进行验证,结果表明,Dice系数达到了93.3%。所提出的分割方法不仅能够精确的分割三维脑胶质瘤图像,而且同样适用于分割二维脑胶质瘤图像。
3 D glioma magnetic resonance imaging has different tumor shapes and blurred edges. The segmentation method based on 2 D Convolutional Neural Network cannot segment the three-dimensional image well. In order to accurately segment the tumor in the three-dimensional image, a 3 D Convolutional Neural Network brain tumor image segmentation method fused with multi-scale feature information is proposed. The feature information is extracted by parallel 3 D dilated convolution, and the information of different receptive fields is fused. The Dice loss and the BCE loss are combined to form a new loss function and cooperate with the identity mapping to further improve the segmentation accuracy. The model was verified on the BraTs2020 data set. The Dice coefficients of the whole tumor area, core area, and enhancement area segmented by the model are 89.1%, 83.9%, 82.6%. The model was verified on the LGG brain tumor image data set, and the Dice coefficient reached 93.3%. The segmentation method can not only accurately segment three-dimensional glioma images, but is also suitable for segmentation of two-dimensional glioma images.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心