登录    注册    忘记密码

详细信息

Robust object removal with an exemplar-based image inpainting approach  ( SCI-EXPANDED收录 EI收录)  

文献类型:期刊文献

英文题名:Robust object removal with an exemplar-based image inpainting approach

作者:Wang, Jing[1,4];Lu, Ke[1];Pan, Daru[1];He, Ning[2];Bao, Bing-kun[3]

第一作者:Wang, Jing

通讯作者:Lu, K[1]

机构:[1]Chinese Acad Sci, Grad Univ, Coll Comp & Commun Engn, Beijing 100049, Peoples R China;[2]Beijing Union Univ, Sch Informat, Beijing 100101, Peoples R China;[3]Chinese Acad Sci, Inst Automat, Beijing 100049, Peoples R China;[4]Henan Polytech Univ, Coll Comp Sci & Technol, Jiaozuo 454000, Peoples R China

第一机构:Chinese Acad Sci, Grad Univ, Coll Comp & Commun Engn, Beijing 100049, Peoples R China

通讯机构:[1]corresponding author), Chinese Acad Sci, Grad Univ, Coll Comp & Commun Engn, Beijing 100049, Peoples R China.

年份:2014

卷号:123

起止页码:150-155

外文期刊名:NEUROCOMPUTING

收录:;EI(收录号:20134316891108);Scopus(收录号:2-s2.0-84885837632);WOS:【SCI-EXPANDED(收录号:WOS:000326909600016)】;

基金:This work was supported by the China Special Fund for Meteorological-Scientific Research in the Public Interest (GYHY201106044), NSFC (Grant nos. 61103130, 61070120, and 61141014), National Program on Key Basic Research Project (973 Programs) (Grant nos. 2010CB731804-1 and 2011CB706901-4).

语种:英文

外文关键词:Object removal; Image inpainting; Exemplar; Filling priority; Similarity

摘要:Object removal can be accomplished by an image inpainting process which obtains a visually plausible image interpolation of an occluded or damaged region. There are two key components in an exemplar-based image inpainting approach: computing filling priority of patches in the missing region and searching for the best matching patch. In this paper, we present a robust exemplar-based method. In the improved model, a regularized factor is introduced to adjust the patch priority function. A modified sum of squared differences (SSD) and normalized cross correlation (NCC) are combined to search for the best matching patch. We evaluate the proposed method by applying it to real-life photos and testing the removal of large objects. The results demonstrate the effectiveness of the approach. (C) 2013 Published by Elsevier B.V.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心