详细信息
社交媒体地理大数据的旅游景点热度分析
Popularity analysis of tourist attraction based on geotagged social media big data
文献类型:期刊文献
中文题名:社交媒体地理大数据的旅游景点热度分析
英文题名:Popularity analysis of tourist attraction based on geotagged social media big data
作者:陈宁[1];彭霞[2];黄舟[1]
第一作者:陈宁
机构:[1]北京大学遥感与地理信息系统研究所;[2]北京联合大学旅游学院
第一机构:北京大学遥感与地理信息系统研究所,北京100871
年份:2016
卷号:41
期号:12
起止页码:167-171
中文期刊名:测绘科学
外文期刊名:Science of Surveying and Mapping
收录:CSTPCD;;北大核心:【北大核心2014】;CSCD:【CSCD2015_2016】;
基金:国家自然科学基金项目(41501162);北京市教委科研计划一般项目(KM201611417004);北京联合大学新起点计划项目(ZK10201501)
语种:中文
中文关键词:社交媒体;地理大数据;景点;热度分析
外文关键词:social media; geographical big data; attraction; popularity analysis
摘要:针对大数据时代,蕴含地理位置信息的社交媒体(Social Media)数据规模正呈爆炸性增长,通过对这类时空数据的挖掘可以整合用户的群体智慧,发现热门景点或线路,为用户提供更加精细的旅行服务。该文基于2005—2016年Flickr图片分享网站中用户分享的带地理标签的图片信息,通过空间聚类以及文本语义挖掘的方法对北京市的热门景点进行了提取。此外,本文还利用北京市的历史天气信息与用户图片信息进行融合,分析在不同时间、不同天气情景下,不同景点的热度分布规律,可以为旅行爱好者提供热门景点在多种视角下的游览规律。
In the big data era,the volume of geotagged social media data that contains location information has gained an explosive growth.Through integrating the group knowledge from the users,mining geotagged social media big data can discover popular tourist attractions and travel routes,and provide more precise travel services.Based on the 2005-2016 geotagged photos provided by Flickr users,this paper used spatial clustering and text semantic mining approaches to extract the popular tourist attractions in Beijing.Furthermore,together with historical weather data,we described the tourist attraction popularity patterns in Beijing under different time and different weather conditions.From multiple points of view,our work enables successfully mining travel laws for popular tourist attractions based on geotagged social media big data.
参考文献:
正在载入数据...