详细信息
Banach空间非线性二阶混合型脉冲积分-微分方程的解
Solutions of Nonlinear Second Order Impulsive Integro-Differential Equations of Mixed Type in Banach Spaces
文献类型:期刊文献
中文题名:Banach空间非线性二阶混合型脉冲积分-微分方程的解
英文题名:Solutions of Nonlinear Second Order Impulsive Integro-Differential Equations of Mixed Type in Banach Spaces
作者:王信峰[1];陈玉花[2];张莉[1]
机构:[1]北京联合大学基础部;[2]北京联合大学应用科技学院
第一机构:北京联合大学基础教学部
年份:2017
卷号:47
期号:4
起止页码:266-272
中文期刊名:数学的实践与认识
外文期刊名:Mathematics in Practice and Theory
收录:CSTPCD;;北大核心:【北大核心2014】;
基金:北京市自然科学基金(1152002)
语种:中文
中文关键词:脉冲积分-微分方程;初值问题;Banach空间;不动点;脉冲积分不等式
外文关键词:Impulsive integro-differential equation; initial value problem; Banach space; fixedpoint; impulsive integral inequality.
摘要:利用Mnch不动点定理以及一个脉冲积分不等式,研究二阶混合型脉冲积分-微分方程初值问题解的存在性.结果涉及右端项既包含导数又包含积分算子Sx的情形.最后给出了一个应用例子.
In this paper, by the Monch's _fixed point theorem and an impulsive integral inequality, we establish the existence of solutions of initial value problems for nonlinear second order impulsive integro-differential equations of mixed-type in Banach spaces. It is desirable that our results involve the right item f with both the derivative and the linear integral operator Sx. An example is given to demonstrate our result.
参考文献:
正在载入数据...