详细信息
采用位置混沌重构的入侵杂草优化在盲源分离的应用
Application of invasive weed optimization based on location chaos reconstruction to blind source separation
文献类型:期刊文献
中文题名:采用位置混沌重构的入侵杂草优化在盲源分离的应用
英文题名:Application of invasive weed optimization based on location chaos reconstruction to blind source separation
作者:李著成[1,2];黄祥林[1]
第一作者:李著成
机构:[1]中国传媒大学理工学部,北京100024;[2]北京联合大学商务学院,北京100025
第一机构:中国传媒大学理工学部,北京100024
年份:2020
卷号:0
期号:2
起止页码:477-480
中文期刊名:计算机应用研究
外文期刊名:Application Research of Computers
收录:CSTPCD;;北大核心:【北大核心2017】;CSCD:【CSCD_E2019_2020】;
语种:中文
中文关键词:入侵杂草优化算法;盲源分离;位置重构;混沌
外文关键词:invasive weed optimization;blind source separation;location reconstruction;chaos
摘要:传统盲源分离(blind source separation,BSS)优化算法的应用场合非常有限,而且分离性能不高,为此提出了一种新的采用位置混沌重构的入侵杂草优化算法(invasive weed optimization,IWO),并对其在盲源分离的应用进行了研究。新算法在每轮更新的初期驱动选出的较优个体向此时种群的最优个体做适当距离的移动,这样不仅会增加种群的多样性,避免算法出现早熟,而且也能够加快收敛速度。盲信号分离仿真实验证实,与标准IWO、粒子群优化算法(particle swarm optimization,PSO)和自然梯度算法(natural gradient,NG)相比,新算法的性能优势明显,收敛速度较快,分离精度较高。
Aiming at the limitation of traditional optimization algorithm for BSS,this paper proposed a new IWO based on location chaos reconstruction,and explored its application to BSS.The new algorithm drove the superior individuals towards the optimal individual of the population at the early stage of each update.It could accelerate the convergence speed,increase the population diversity and avoid the premature convergence.Simulation experiments for BSS show that the proposed algorithm is more effective than the basic IWO,PSO and natural gradient NG,and has faster convergence speed and higher separation accuracy.
参考文献:
正在载入数据...