详细信息
Banach空间中脉冲积分-微分方程的迭代解
The Iterative Solutions of Impulsive Integro-differential Equations in Banach Spaces
文献类型:期刊文献
中文题名:Banach空间中脉冲积分-微分方程的迭代解
英文题名:The Iterative Solutions of Impulsive Integro-differential Equations in Banach Spaces
作者:王信峰[1]
机构:[1]北京联合大学基础部
第一机构:北京联合大学基础教学部
年份:2007
卷号:20
期号:2
起止页码:239-242
中文期刊名:应用数学
外文期刊名:Mathematica Applicata
收录:CSTPCD;;北大核心:【北大核心2004】;CSCD:【CSCD2011_2012】;
语种:中文
中文关键词:初值问题;脉冲积分-微分方程;序Banach空间;最大解;最小解
外文关键词:Initial value problem; Impulsive integro-differential equation; Ordered Banach space;Maximal solution ;Minimal solution
摘要:利用单调迭代技术,本文首先讨论了Banach空间一阶脉冲积分-微分方程初值问题最大解与最小解的存在性.在此基础上,讨论了右端项中带有一阶导数的二阶脉冲积分-微分方程初值问题最大解与最小解的存在性.最后的例子说明对导数的限制条件是可验证的.
By using the monotone iterative technique, the existence of maximal and minimal solutions of initial value problems for one-order impulsive integro-differential equations in Banach spaces is firstly investigated in this paper,and based on the results,the existence of maximal and minimal solutions of initial value problems for two-order impulsive integro-differential equations with a derivative in Banach spaces is discussed. The instance implied that the conditions depending on derivative is feasible.
参考文献:
正在载入数据...