详细信息
文献类型:期刊文献
中文题名:三阶边值问题的3个正解的存在性
英文题名:Exsitence of Three Positive Solutions for Third-order Boundary Value Problem
作者:张立新[1]
机构:[1]北京联合大学基础部
第一机构:北京联合大学基础教学部
年份:2011
卷号:34
期号:4
起止页码:466-470
中文期刊名:四川师范大学学报:自然科学版
收录:CSTPCD;;北大核心:【北大核心2008】;CSCD:【CSCD_E2011_2012】;
基金:国家自然科学基金(10671012)资助项目
语种:中文
中文关键词:三阶三点边值问题;不动点定理;正解
外文关键词:third-order three-point boundary value problem; fixed point theorem; positive solution
摘要:三阶微分方程起源于应用数学、物理学等不同学科领域中,有着广泛的应用背景和重要的理论作用.考虑三阶三点边值问题,证明了线性边值问题有唯一解且其解用格林函数表示,当非线性项f满足一定增长条件时,利用Avery-Peterson不动点定理得到了上述边值问题至少有3个正解的存在性结果.
Third-order differential equations arise in a variety of different areas of applied mathematics and physics,also have comprehensively applied background and important meaning of theory-oriented.This paper is concerned with the third-order three-point boundary value problem.First,the existence of the unique solution for linear boundary value problem is proved,and its Green's function is given.Finally,the existence of at least three positive solutions for the above problem is established by using Avery-Peterson fixed point theorem,when f satisfies some growth conditions.
参考文献:
正在载入数据...