登录    注册    忘记密码

详细信息

应用于无人驾驶车的激光雷达雪天去噪方法研究    

Research on snow filtering method based on unmanned vehicle lidar

文献类型:期刊文献

中文题名:应用于无人驾驶车的激光雷达雪天去噪方法研究

英文题名:Research on snow filtering method based on unmanned vehicle lidar

作者:钟科娣[1];刘元盛[2];张军[2];路铭[3]

第一作者:钟科娣

机构:[1]北京联合大学北京市信息服务工程重点实验室,北京100101;[2]北京联合大学机器人学院,北京100101;[3]北京联合大学应用科技学院,北京100101

第一机构:北京联合大学北京市信息服务工程重点实验室

年份:2021

卷号:51

期号:8

起止页码:985-991

中文期刊名:激光与红外

外文期刊名:Laser & Infrared

收录:CSTPCD;;Scopus;北大核心:【北大核心2020】;CSCD:【CSCD_E2021_2022】;

基金:北京联合大学人才强校优选-拔尖计划“无人驾驶车复杂场景中可靠性定位技术研究”项目(No.BPHR2020BZ01);国家自然科学基金“无人车多视视频信息获取与定位关键技术”项目(No.61871038);国家自然科学基金“基于视觉计算的智能驾驶实时城市道路场景理解”项目(No.61871039);北京联合大学研究生科研创新资助项目(No.YZ2020K001)。

语种:中文

中文关键词:无人驾驶;激光雷达;噪声滤除;反射强度;邻域搜索

外文关键词:autonomous driving;lidar;noise filtering;reflection intensity;neighborhood search

摘要:针对雪花噪声对激光雷达造成误检的问题,提出了一种基于激光雷达反射强度和邻域搜索算法的综合方法对降雪场景采集的激光雷达点云数据进行去噪处理。首先通过自适应方法统计激光雷达点云数据的反射强度分布,计算点云的动态边界阈值。然后,通过分析点云数据反射强度与邻域搜索算法对雪花噪声进行滤除。本方法对园区降雪天气下的实际激光点云数据进行了实验验证,实验结果表明该方法在滤除效果和保留周边环境特征等关键数据优于常用的动态半径离群点滤波器等方法,而且在车辆无人驾驶应用中具有较好的有效性与可行性。
Aiming at the problem of snowflake noise causing false detection of lidar,this paper proposes a comprehensive method that combines lidar reflection intensity and neighborhood search algorithm to achieve denoising processing of lidar point cloud in snowfall scenes.First,the reflection intensity distribution of lidar point cloud is counted by an adaptive method,and the dynamic boundary threshold of point cloud is calculated.Then,the noise caused by snowflake is filtered out by analyzing the reflection intensity of the point cloud data and the neighborhood search algorithm.This method is verified with real time lidar point cloud data in the park environments under snowy days.The experimental results show that this method has a better performance than the common methods,such as Dynamic Radius Outlier Removal Filter,in filtering effect and retaining the surrounding environment characteristics.It can promote the application in snowy weather of autonomous driving vehicles.

参考文献:

正在载入数据...

版权所有©北京联合大学 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心