详细信息
基于v-gap达到L_(2)最优的EIV模型频域辨识方法研究
Research on frequency-domain identification method of EIV-model based on the v-gap to obtain the L_(2) optimum
文献类型:期刊文献
中文题名:基于v-gap达到L_(2)最优的EIV模型频域辨识方法研究
英文题名:Research on frequency-domain identification method of EIV-model based on the v-gap to obtain the L_(2) optimum
作者:萧德云[1];耿立辉[2];纪国锋[2];张益农[3];农时猛[4];杨帆[1];巨辉[5];刘敏华[6]
第一作者:萧德云
机构:[1]清华大学自动化系,北京100084;[2]天津职业技术师范大学自动化与电气工程学院,天津300222;[3]北京联合大学城市轨道交通与物流学院,北京100101;[4]中国空间技术研究院,北京100190;[5]成都信息工程大学,四川成都610225;[6]北京市怀柔区委,北京101400
第一机构:清华大学自动化系,北京100084
年份:2025
卷号:42
期号:11
起止页码:2156-2164
中文期刊名:控制理论与应用
外文期刊名:Control Theory & Applications
收录:;北大核心:【北大核心2023】;
语种:中文
中文关键词:系统辨识;EIV模型;v-gap测度;L_(2)最优准则;频域
外文关键词:system identification;EIV model;v-gap measure;L_(2)optimum criterion;frequency domain
摘要:本文论述一类基于v-gap测度、达到实现L_(2)最优的变量带误差(EIV)模型辨识问题,包括单输入单输出系统的开环与闭环EIV模型辨识和多输入多输出系统的EIV模型辨识.基于v-gap测度就是以扰动模型与逼近模型之间的距离为优化准则,当满足相应的Nyquist缠绕条件时,获得模型辨识的最优解.达到L_(2)最优是指,在L_(2)空间下对扰动的输出和输入频域实验数据进行正交分解,使正规右互质因子描述的系统模型的值空间与系统模型补因子描述的噪声模型的值空间具有正交性,通过优化v-gap测度间接使逼近误差(噪声)达到L_(2)最小.本文所提出的方法为EIV模型辨识提供了一种新的研究途径,同时适用于闭环系统和多变量系统等多种情况下,不需要对系统输入和输出有界噪声的特性做任何假设,可以同时估计获得系统模型和相应的噪声模型,在工程上具有广泛的实用性.
In this paper,a class of errors-in-variables(EIV)model identification problems is discussed based on the v-gap measure to obtain the L_(2) optimum,and it includes EIV model identification for single input and single output(SISO)open-loop and closed-loop systems as well as multiple input and multiple output(MIMO)systems.Basing the method on the v-gap measure involves considering the distance between the disturbed and approximation models as an optimization criterion and then obtaining the optimal solution to the model identification problem when the corresponding Nyquist winding condition is met.Obtaining the L_(2) optimum involves performing an orthogonal decomposition in the L_(2) space of the disturbed output and input frequency-domain experimental data such that the range space of the system model,described by the normalized right coprime factors,is orthogonal to that of the noise model,described by the system model’s complementary factor.The associated approximation error(noise)can then be indirectly minimized in the L_(2) sense by optimizing the v-gap measure.The proposed method offers a new approach for EIV model identification and is applicable to both closed-loop and multivariable systems.It requires no assumptions about the characteristics of the bounded system input and output noises and can simultaneously estimate the system and associated noise models,making it broadly applicable in engineering practice.
参考文献:
正在载入数据...
